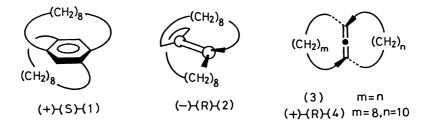
SYNTHESIS AND CHIROPTICAL PROPERTIES OF AN OPTICALLY ACTIVE DOUBLY BRIDGED ALLENE. [8][10]SCREW[2]ENE

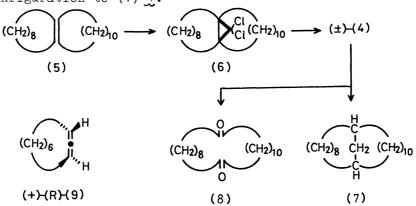

Masao NAKAZAKI,* Koji YAMAMOTO, and Miharu MAEDA

Department of Chemistry, Faculty of Engineering Science

Osaka University, Toyonaka, Osaka 560

The dichlorocyclopropane derivative 6 prepared from 5 was treated with (-)-sparteine modified butyllithium to afford (+)-(R)-[8][10] doubly bridged allene 4 whose absolute configuration was assigned by its CD analysis.

Our continuing interests on twisted π -electron systems have led us to report the first synthesis and absolute configuration determination of (+)-(S)-[8][8]paracyclo-phane (1)¹⁾ and (-)-(R)-[8][8] trans doubly bridged ethylene (2),²⁾ and a natural extension of these studies prompted us to prepare the doubly bridged allene (3) whose unique axial chirality as well as its gyrochiral nature has been much discussed.³⁾ In this communication, we wish to report our successful synthesis of (±)- and (+)-(R)-[8][10] doubly bridged allene ([8][10]screw[2]ene) (4)⁴⁾ together with latter's chiroptical properties.



Dichlorocarbene insertion reaction of bicyclo[10.8.0]eicos-1(12)-ene $(5)^6$) with chloroform, 50% NaOH, and cetyltrimethylammonium chloride provided an 84% yield of the dichlorocyclopropane derivative 6, mp 120-121°C which was treated with butyllithium in diethyl ether at -78°C. Purification through vacuum distillation (bp 125-135°C/0.1 mmHg) followed by chromatography over 5% AgNO₃ immersed silica gel gave the (\pm) -[8][10] doubly bridged allene $(\pm)^8$ which was recrystallized from acetone to afford a 5% yield of needles, mp 72-74°C, MS(m/e) 288(M⁺), UV (isooctane) λ max 213.5 nm (ϵ 9400).

Making a striking contrast to the corresponding [8][10] trans doubly bridged ethylene which was found inert to both catalytic hydrogenation and ozonolysis, 6 , 9) ($_{\underline{+}}$)- $_{\underline{+}}$ could be smoothly hydrogenated with PtO₂ catalyst in ethyl acetate-acetic acid solution to the tetrahydro derivative $_{\underline{7}}$, mp 41-42°C, MS(m/e) 292(M⁺). Isolation of 1,10-cycloeicosanedione (8)¹⁰⁾, mp 51-53°C, from the ozonolysis product of ($_{\underline{+}}$)- $_{\underline{+}}$ also confirmed the proposed structure $_{\underline{+}}$.

In securing $\frac{4}{2}$ in an optically active modification, the dichlorocyclopropane

derivative δ was reacted with a mixture of butyllithium (2 mol equiv) and (-)sparteine 11) (4 mol equiv) in diethyl ether at -78°C, and the same procedure for the preparation of the racemic modification including $AgNO_3$ -silica gel chromatography yielded (+)-4 (9% yield), mp 59-64°C, $[\alpha]_0^{18}$ +4.3°(c 1.6 in hexane); $[\alpha]_{365}^{18}$ +13° (c 1.6 in hexane)¹²) whose identification was established by the spectral comparison with the racemic 4. The dextrorotatory 4 exhibits, in common with (+)-(R)-1,2cyclononadiene (9), 13) a characteristic Cotton curve with respective (-) and (+)-Cotton effect at shorter and longer wavelength region (c 1.48×10^{-3} , isooctane; [0] $(nm) +1.4 \times 10^{2} (220), -2.0 \times 10^{2} (231))$, and this, when coupled with the "sector rule", 14) assigns the (R)-configuration to (+)-4.

References and Notes

- M. Nakazaki and K. Yamamoto, Chem. Lett., 1051 (1974); M. Nakazaki, K. Yamamoto, M. Itho, and S. Tanaka, J. Org. Chem., 42, 3468 (1977).
 M. Nakazaki, K. Yamamoto, and M. Maeda, J. Chem. Soc., Chem. Commun., 294 (1980); J. Org. Chem., 45, 3229 (1980).
 R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem. Int. Ed. Engl., 5, 385 (1966).
- The IUPAC name is bicyclo[10.8.1]heneicos-1(21),12(21)-diene. To circumvent these long and awkard namings and to emphasis their inherent gyrochiral symmetry $(C_2 \text{ or } D_2)$, we proposed⁵⁾ to call a series of these chiral doubly bridged cumulenes by the name of [m][n]screw[p]ene where m and n indicate number of methylene groups constructing the two bridges while p indicates number of
- cumulative double bonds. As an extension of this nomenclature, the trans doubly bridged ethylene 2 may be called as [8][8]screw[1]ene.

 In a seminar entitled "Syntheses, Stereochemistry and Microbial Stereodifferentiating Reactions in High-Symmetry Chiral Molecules," held on Sept 30, 1977 at Institut Le Bel, Université Louis Pasteur, Strasbourg.

 M. Nakazaki, K. Yamamoto, and J. Yanagi, J. Chem. Soc., Chem. Commun., 346 (1977); J. Am. Chem. Soc., 101, 147 (1979).

 W. R. Moore and H. R. Ward, J. Org. Chem., 27, 4179 (1962); L. Skattebøl, Acta Chem. Scand., 17, 1683 (1963).

 Satisfactory elemental analyses and mass spectral data have been obtained for all

- Satisfactory elemental analyses and mass spectral data have been obtained for all new compounds.
- V. Ceré, C. Paolucci, S. Pollicino, E. Sandri, and A. Fava, J. Chem Soc., Chem. Commun., 755 (1980); J. A. Marshall and T. H. Black, J. Am. Chem. Soc., 102, 7581 (1980).

- 10) W. Brenner and P. Heimbach, Justus Liebigs Ann. Chem., 660 (1975).

 11) H. Nozaki, T. Aratani, T. Toraya, and R. Noyori, Tetrahedron, 27, 905 (1971); P. J. Garrat, K. C. Nicolaou, and F. Sondheimer, J. Am. Chem. Soc., 95, 4582 (1973).

 12) A tentative 2.5% optical purity can be assigned to this dextrorotatory specimen 4 based on the alleged absolute rotation 13) reported for the monocyclic allene 9, $[\alpha]_0^{25} +170^{\circ}(CH_2Cl_2).$
- 13) W. R. Moore, R. D. Bach, and T. M. Ozretich, J. Am. Chem. Soc., <u>91</u>, 5918 (1969).
 14) P. Crabbé, E. Velarde, H. W. Anderson, S. D. Clark, and W. R. Moore, J. Chem. Soc. Chem. Commun., 1261 (1971); A. Rauk, A. F. Drake, and S. F. Mason, J. Am. Chem. Soc., <u>101</u>, 2284 (1979).